Introduction to Mathematics and Modeling

lecture 7

Points, lines and planes

UNIVERSITY OF TWENTE.

academic year : 18-19
lecture : 7
build : March 29, 2019
slides : 27
1. Lines in \mathbb{R}^2
2. Section 12.5: lines and planes in space
3. Application: perspective projection
Convention

- From now on we will identify points with terminal points of vectors in standard position:
 \[P = \mathbf{v} \]

- We will abandon the notation \(\langle x_1, \ldots, x_n \rangle \) and use \((x_1, \ldots, x_n)\) instead.
Definition

A line in \(\mathbb{R}^2 \) is defined by an equation of the form

\[
\ell : ax + by = c
\]

(*)

with \(a, b \) and \(c \) real numbers.

- The line \(\ell \) consists of the points that satisfy equation (*):

\[
\ell = \{(x, y) \mid ax + by = c\}.
\]

- The line \(\ell \) is the **solution set** of equation (*).
Parametrisation

Definition

A *parametrisation* of the line ℓ is a function $r : \mathbb{R} \rightarrow \mathbb{R}^2$ such that $r(t)$ reaches all points of ℓ while t runs through all real numbers.

- The number t is called the **parameter**.
- The line ℓ is the set of all points $r(t)$:
 \[\ell = \{ r(t) \mid t \in \mathbb{R} \} \]
- The function $r(t)$ has two components that both depend on t:
 \[r(t) = (x(t), y(t)) \]
- Functions like r with values in \mathbb{R}^n are called **vector functions**.
Example

Given is the line $\ell: 2x + 3y = 6$. Find a parametrisation of ℓ.
Example

Find an equation for the line

\[\ell : (3t, 2 - 2t), \quad t \in \mathbb{R}. \]
Theorem

For every line ℓ there exist numbers p_1, p_2, v_1 and v_2 such that

$$r(t) = (p_1 + v_1 t, p_2 + v_2 t) \quad t \in \mathbb{R}.$$

- Write $r(t)$ as follows:
 $$r(t) = (p_1, p_2) + t(v_1, v_2).$$
- The vector $p = (p_1, p_2)$ is called a **support vector** of ℓ.
- The vector $v = (v_1, v_2)$ is called a **direction vector** of ℓ.
- Define $q = r(1)$, then
 $$r(1) = p + v, \quad \text{dus} \quad v = q - p.$$
- The **parametrised vector form** of ℓ is
 $$\ell: r(t) = p + tv \quad t \in \mathbb{R}.$$
Example

Find a support- and a direction vector of the line $\ell: 2x + 3y = 6$, and find a parametrised vector form of ℓ.
Definition

Let \(\mathbf{p} \) and \(\mathbf{v} \neq \mathbf{0} \) be vectors. The parametrised vector form of the line through \(\mathbf{p} \) and parallel to \(\mathbf{v} \) is

\[
\mathbf{r}(t) = \mathbf{p} + t\mathbf{v}, \quad t \in \mathbb{R}.
\]

- The vector \(\mathbf{p} \) is called a support vector and the vector \(\mathbf{v} \) is called a direction vector of the line.
- If \(\mathbf{r}(t) = (f(t), g(t), h(t)) \), then the equations

\[
\begin{align*}
 x &= f(t), \\
 y &= g(t), \\
 z &= h(t)
\end{align*}
\]

are called the parametric equations of the line.
Example

Find the parametric equations of the line \(\ell \) through \((-2, 0, 4)\) in the direction
\[
v = 2i + 4j - 2k
\]
\[
= (2, 4, -2).
\]
Example

Find the parametric equations of the line \(\ell \) through \(P = (-3, 2, -3) \) and \(Q = (1, -1, 4) \).
Summary

- A parametrisation of the line through a point P parallel to a vector $v \neq 0$ is
 \[p + tv, \quad t \in \mathbb{R}, \]
 with support vector $p = \overrightarrow{OP}$ and direction vector v.

- A parametrisation of the line through two points P and Q is
 \[p + tv, \quad t \in \mathbb{R} \]
 with support vector $p = \overrightarrow{OP}$ and direction vector $v = \overrightarrow{PQ}$.

Warning

Parametrisations are not unique:

- Every point on the line can be chosen as support vector.
- Every non-zero vector parallel to the line can be chosen as direction vector.
Suppose two lines ℓ and m have parametrised vector forms $p + tv$ and $q + sw$ respectively.

An intersection is found if there are values for t and s such that

$$p + tv = q + sw. \quad (*)$$

Since vector equations in \mathbb{R}^3 yield three equations, equation $(*)$ may fail to have a solution, even if ℓ and m are not parallel.

Non-parallel lines that do not intersect are called skew.
Example

Let \(\ell \) be the line with support vector \((-3, -3, 1)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.
Example

Let \(\ell \) be the line with support vector \((-3, -3, 0)\) and direction vector \((2, 1, 1)\). Let \(m \) be the line with support vector \((2, -3, -2)\) and direction vector \((-1, 2, 4)\). Determine if \(\ell \) and \(m \) intersect, and if so, find the intersection point.
Definition

A plane in \(\mathbb{R}^3 \) is defined by an equation of the form

\[
M : ax + by + cz = d
\]

with \(a, b, c \) and \(d \) real numbers.

Examples:

- The plane \(M_1 \) defined by
 \[
 M_1 : x + y + z = 1
 \]
 passes through the points \((1, 0, 0), (0, 1, 0)\) and \((0, 0, 1)\).

- The plane \(M_2 \) defined by
 \[
 M_2 : x + y + z = 0
 \]
 passes through \(O \) and is parallel to \(M_1 \).

- The plane \(M_3 \) defined by
 \[
 M_3 : 2y = 3
 \]
 is the plane through \((0, 3/2, 0)\) parallel to the \(xz\)-plane.
Definition

A support vector of a plane M is a vector $\mathbf{p} = \vec{OP}$ with P a point of M.

Suppose M is defined by $ax + by + cz = d$, and let $P = (x_0, y_0, z_0)$ be a point in M, then $ax_0 + by_0 + cz_0 = d$, hence

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

for all $(x, y, z,)$ in M.

Definition

The equation

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

is called the vector equation of M.
Definition

A normal vector of a plane M is a vector $n \neq 0$ that is perpendicular to M.

- Let M be a plane defined by the vector equation
 \[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0, \]
 then for all $(x, y, z,)$ in M:
 \[(a, b, c) \cdot (x - x_0, y - y_0, z - z_0) = 0, \]
 \[(a, b, c) \cdot ((x, y, z) - (x_0, y_0, z_0)) = 0. \]

- Define $x = (x, y, z)$, $p = (x_0, y_0, z_0)$ and $n = (a, b, c)$, then
 \[n \cdot (x - p) = 0 \quad \text{for all } x \text{ in } M. \]

Definition

The equation $n \cdot (x - p) = 0$ is called the normal equation of M.
Theorem

Let M be defined by the normal equation $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$, where \mathbf{n} is a normal vector of M, and let $\mathbf{p} = (x_0, y_0, z_0)$ be a support vector. If $X = (x, y, z)$ is a point of M then $\mathbf{n} \perp \overrightarrow{PX}$.

- Note that $\overrightarrow{PX} = \mathbf{x} - \mathbf{p}$.

![Diagram](image)
Example

Find an equation of the plane \(M \) through \((-3, 0, 7)\) orthogonal to \(\mathbf{n} = (5, 2, -1) \).
Example

Find a normal equation for the plane $M : y - 2z = 4$.

Unlike lines in \mathbb{R}^2, lines in \mathbb{R}^3 cannot be described by one equation: a linear equation $ax + by + cz = d$ describes a **plane**.

In order to describe a line you need *two* equations:

$$\begin{cases} ax + by + cz = d \\ px + qy + rz = s \end{cases}$$

Regard a line as the intersection of two planes:
Example

Give a parametrisation of the line described by the equations

\[
\begin{align*}
x + y - 2z &= -1 \\
2x - y + z &= 2
\end{align*}
\]
Check your answer!
Example

The line ℓ is defined by the parametrisation

$$x = \frac{8}{3} + 2t, \quad y = -2t, \quad z = 1 + t, \quad t \in \mathbb{R}.$$

Find the intersection of ℓ and the plane $3x + 2y + 6z = 6$.

Parametrise the line ℓ as follows:

\[\ell : \mathbf{r}(t) = (x_0, 0, 0) + t(x_1 - x_0, y_1, z_1), \quad t \in \mathbb{R}. \]

The intersection of ℓ and the yz-plane is $P = \mathbf{r}(t_0)$ with $t_0 = \frac{x_0}{x_0 - x_1}$.

For $P = (0, y, z)$ we have

\[y = t_0 y_1 = \frac{x_0 y_1}{x_0 - x_1} \quad \text{and} \quad z = t_0 z_1 = \frac{x_0 z_1}{x_0 - x_1}. \]